Compuestos bioactivos en harinas integrales y salvados de arroz (Oryza sativa L.) Bioactive compounds in rice (Oryza sativa L.) | Wholemeals and brans
Resumen
El consumo regular de granos enteros y sus productos puede reducir el riesgo de enfermedades crónicas tales como: las cardiovasculares, diabetes tipo II y algunos tipos de cáncer. El objetivo de este estudio fue evaluar el contenido de compuestos bioactivos en harinas integrales y salvados de arroz (variedades: Cimarrón, FONAIAP 1 y Zeta 15), tales como: fibra dietética total (FDT), determinada por método enzimático-gravimétrico; inhibidores de tripsina (IT), ácido fítico (AF) y taninos condensados (TC), cuantificados por colorimetría. Se encontraron diferencias significativas (p < 0,05) para los compuestos bioactivos entre las harinas integrales y los salvados. Los salvados son una fuente rica de FDT, AF y TC. La variedad Cimarrón exhibió el mayor contenido de FDT, en el salvado (40,61 ± 0,10%) y en la harina (14,04 ± 0,12%); mientras que la FONAIAP 1 mostró el menor contenido en el salvado (33,67 ± 0,64%) y la harina (11,44 ± 0,24%). Los IT en harinas y salvados presentaron un intervalo de 5,70 ± 0,02 a 6,35 ± 0,35 mg/g en todas las variedades, excepto en la harina Zeta 15 (3,72 ± 0,04 mg/g). Las concentraciones de AF y TC en los salvados, presentaron valores significativamente superiores con respecto a las harinas integrales. Los hallazgos demostraron que las harinas integrales y los salvados de arroz analizados en este estudio, pueden suministrar a la dieta importantes compuestos bioactivos (FDT, IT, AF y TC) de gran significancia para la salud. Los salvados mostraron ser una fracción del arroz con alta concentración de FDT, AF y TC.
Palabras clave: Fibra dietética total, inhibidores de tripsina, ácido fítico, taninos condensados.
ABSTRACT
The regular consumption of whole grains and their products may reduce the risk of chronic diseases, such as cardiovascular diseases, type II diabetes, and several forms of cancer. The objective of this study was to evaluate the bioactive compounds content in wholemeals and brans of rice (Cimarron, FONAIAP 1 and Zeta 15 varieties), such as: total dietary fiber (FDT), determined by gravimetric-enzymatic method; trypsin inhibitors (IT), phytic acid (AF), and condensed tannins (TC) contents, all of them determined by colorimetric methods. Significant differences (p < 0.05) for bioactive compounds content were found between brans and wholemeals. It was found that rice brans are good sources of FDT, AF, and TC. The highest content of FDT was observed in the Cimarron variety as bran (40.61 ± 0.10%) as well as wholemeal (14.04 ± 0.12%); while FONAIAP 1 exhibited the lowest content in bran (33.67 ± 0.64%) and wholemeal (11.44 ± 0.24%.). The IT in rice wholemeal and bran ranked from 5.70 ± 0.02 to 6.35 ± 0.35 mg/g in all varieties, with the exception of wholemeal from Zeta 15 variety (3.72 ± 0.04 mg/g). In the brans, AF and TC concentrations showed significantly higher values with respect to wholemeals. The findings showed that wholemeals and brans of rice analyzed in this study may provide important dietary bioactive compounds (FDT, IT, AF and TC) of great significance for health. The brans showed to be a fraction of the rice with high concentration of FDT, AF and TC.
Key words: Total dietary fiber, trypsin inhibitors, phytic acid, condensed tannins.
Referencias
AACC (AMERICAN ASSOCIATION OF CEREAL CHEMISTS). 1990. Approved Methods of the American Association of Cereal Chemists. 8th ed. The Association, St. Paul, MN, USA.
AGUILAR-GARCÍA C, GAVINO G, BARAGAÑO-MOSQUEDA M, HEVIA P, GAVINO V. 2007. Correlation of tocopherol, tocotrienol, γ-oryzanol and total polyphenol content in rice bran with different antioxidant capacity assays. Food Chem. 102(4):1228-1232.
AHMAD I, JAVED K, SATTAR A. 2003. Effect of phytate contents of cereals on bioavailability of total phosphorus in poultry. Pak. Vet. J. 23(3):118-121.
AOAC (ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS). 2000. Official Methods of Analysis Association of Agricultural Chemists. 17th ed. Horwitz, W. Edit. Inc. Virgina, Washington D.C, USA.
BIRKETT A, CHO S. 2013. Cereal fiber and health: Current knowledge. Cereal Food World. 58(6):309-313.
BRYANT R, DOTSCH J, PETERSON K, RUIGER J, RAHOY V. 2005. Phosphorus and mineral concentrations in whole grain and milled low phytic acid (lpa) 1-1 rice. Cereal Chem. 82(5):517-522.
BURNS R. 1971. Method for estimation of tannic in grain sorghum. Agron. J. 63(3):511-512.
CALPE C. 2006. Rice international commodity profile. Food and Agriculture Organization of the United Nations. Markets and Trade Division. http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Rice/Documents/Rice_Profile_Dec-06.pdf (Access 08.06.2016).
CHAKUTON K, PUANGPRONPITAG D, NAKORNRIAB M. 2012. Phytochemical content and antioxidant activity of colored and non-colored Thai rice cultivars. Asian J. Plant Sci. 11(6):285-293.
EARLEY E, DETURK E. 1944. Time and rate of synthesis of phytin in corn grain during reproductive period. J. Am. Soc. Agron. 36:803-814.
FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación). 2004. El arroz y la nutrición humana. Italia. Disponible en línea en: http://www.fao.org/rice2004/es/f-sheet/hoja3.pdf (Acceso 01.08.2015).
FRAIRE-VELÁZQUEZ S, RODRÍGUEZ-GUERRA R, SÁNCHEZ-CALDERÓN L. 2011. Abiotic and biotic stress response crosstalk in plants. In: KUMAR A, VENKATESWARLU B (Ed). Abiotic stress response in plants - physiological, biochemical and genetic perspectives. InTech, Rijeka, Croatia, pp. 3.
GANI A, WANI S, MASOODI F, GOUSIA H. 2012. Whole-grain cereal bioactive compounds and their health benefits: A review. Food Process. Tecnol. 3(3):1-10.
HAMERSTRAND G, BLACK, L, GLOVER J. 1981. Trypsin inhibitors in soy products: Modification of the standard analytical procedure. Cereal Chem. 58(1):42-45.
INN (INSTITUTO NACIONAL DE NUTRICIÓN). 2000. Valores de referencia de energía y nutrientes para la población venezolana. Caracas: Serie de Cuadernos Azules N°53.
JULIANO B, BECHTEL D. 1985. The rice grain and its gross composition. In: JULIANO B (Ed). Rice: Chemistry and Technology. 2nd ed.: American Association of Cereal Chemists. Inc. St. Paul, Minnesota, USA, pp. 17-57.
KAUR S, SAVITA S, NAGI H. 2011. Functional properties and anti-nutritional factors in cereal bran. Asian J. Food Ag. Ind. 4(02):122-131.
KHAN S, BUTT M, ANJUM F, JAMIL A. 2009. Antinutritional appraisal and protein extraction from differently stabilized rice bran. Pak. J. Nutr. 8(8):1281-1286.
OKARTER N, LIU R. 2010. Health benefits of whole grain phytochemicals. Crit. Rev. Food Sci. Nutr. 50(3):193-208.
OLMEDILLA B, FARRÉ R, ASSENCIO C, MARTÍN M. 2010. Papel de las leguminosas en la alimentación actual. Actividad Dietética. 14(2):72-76.
OLUKEMI R, ABIDEMI O, ABDULSALAM S. 2013. Functional properties and anti-nutritional factors of some selected Nigerian cereals. Compr. Res. J. Agr. Sci. 1(1):1-5
OSMAN M. 2011. Effect of traditional fermentation process on the nutrient and antinutrient contents of pearl millet during preparation of Lohoh. J. Saudi Soc. Agr. Sci. 10(1):1-6.
PACHECO E, PEÑA J, ORTIZ A. 2002. Composición físico-química del aceite y salvado de arroz estabilizado por calor. Agron. Trop. 52(2):173-185.
PALAD T, CASIBANG A, POMIDA M, SANTOS J. 2014. Dietary fiber characteristics and mineral availability from treated and non-treated brown rice. Agr. Forest. Fish. 3(5):401-404.
PARIANI S, CONTRERAS M, ROSSI F, SANDER V, CORIGLIANO M, SIMON F, BUSI M, GOMEZ-CASATI D, PIECKENSTAIN F, DUSCHAK V, CLEMENTE M. 2016. Characterization of a novel Kazal-type serine proteinase inhibitor of Arabidopsis thaliana. Biochimie. 123:85-94.
PARK S, KIM J, LEE S, OH S, LEE S, JANG J, YANG C, WON Y, YEO Y. 2014. Comparative analysis of phenolic acid profiles of rice grown under different regions using multivariate analysis. Plant Omics J. 7(6):430-437.
POIANA M, ALEXA E, BRAGEA M. 2009. Studies concerning the phosphorus bioavailability improvement of some cereals used in nourishment. J. Rom. Biotechnol. Lett. 14(3):4467-4473.
RUXTON C, DERBYSHIRE E. 2014.The health benefits of whole grains and fibre. Nutr. Food Sci. 44(6):492-519.
RYAN E. 2011. Bioactive food components. J. Am. Vet. Med. Assoc. 238(5):593-600.
SAENKOD C, LIU Z1, HUANG J, GONG Y. 2013. Anti-oxidative biochemical properties of extracts from some Chinese and Thai rice varieties. Afr. J. Food Sci. 7(9):300-305.
THOMPSON D, ERDMAN J. 1982. Phytic acid determination in soybeans. J. Food Sci. 47(2):513-515.
WEI W, FANG-MIN CH, ZHENG-HUI L, KE-SU W. 2007. Difference of phytic acid content and its relation to four protein composition contents in grains of twenty-nine japonica rice varieties from Jiangsu and Zhejiang Provinces, China. Rice Sci. 14(4):311-314.
WOYENGO T, NYACHOTIL C. 2013. Review: Anti-nutritional effects of phytic acid in diets for pigs and poultry current knowledge and directions for future research. Can. J. Anim. Sci. 93(1):9-21.
Texto completo:
PDFReferencias
Enlaces refback
- No hay ningún enlace refback.