Obtención y caracterización de la fase vaterita metaestable del carbonato de calcio catalizada por Ag-Mg a temperatura ambiente | Obtaining And Characterization Of The Metastable Vaterite Phase Of Calcium Carbonate Catalyzed by Ag-Mg at room temperature

Loisangela Álvarez, Edgar Márquez, Euclides Velasco

Resumen


RESUMEN

Fue realizada la cristalización de CaCO3, mediante el método de difusión de gas, con CaCl2 y (NH4)2CO3 como fuentes de iones Ca2+ y CO32-, respectivamente, y promovida por un catalizador de HDL Ag-Mg a temperatura ambiente. Por difracción de rayos X, se comprueba que la reacción catalizada promovió la formación de los polimorfos del CaCO3 calcita y vaterita, este último con un porcentaje oscilando el 20% en los casos de variación de las concentraciones de iones Ca2+ y CO32- o variando el catalizador. Por Microscopia Electrónica de Barrido fue comprobada las morfologías romboedral para la calcita y de arreglo esférico de capas para la vaterita. La mayor cantidad de vaterita se obtuvo empleando 5 mmol de CaCl2, 21,1 mmol de (NH4)2CO3 y 0,1 g del catalizador.

PALABRAS CLAVE: CaCO3, polimorfo, catalizador Mg-Ag, calcita, vaterita.

ABSTRACT

The crystallization of CaCO3 was performed with CaCl2 and (NH4)2CO3 as sources of Ca2+ and CO32- ions, respectively, and promoted by a catalyst of Ag-Mg LDH at room temperature. It was demonstrated by X-ray diffraction that the catalyzed reaction promoted the formation of polymorphs of CaCO3 calcite and vaterite, the latter with a percentage ranging 20% in the cases of variation of the concentration of Ca2+ and CO32- ions or varying of catalyst. By Scanning Electronic Microscopy it was tested out the morphologies, rombohedral for calcite and spherical arrangement of layers for vaterite. The highest amount of vaterite was obtained using 5 mmol of CaCl2, 21.1 mmol of (NH4)2CO3 and 0.1 g of the catalyst.

KEY WORDS: CaCO3, polymorph, Ag-Mg catalyst, calcite, vaterite.


Referencias


AL OMARI MM, RASHID IS, QINNA NA, JABER AM, BADWAN AA. 2016. Calcium Carbonate. BRITTAIN HG. (Ed.). Profiles of Drug Substances, Excipients and Related Methodology. Elsevier, Cambridge, USA, pp. 31-132.

ÁLVAREZ L, ROSAS F, MÁRQUEZ E, VELAZCO EJ. 2017. Caracterización y estabilización de la fase metaestable del carbonato de calcio obtenida mediante la aplicación de una capa de Bi2O2CO3:Al a temperatura ambiente. Avances en Química. 12(1):13-21.

CHU DH, VINOBA M, BHAGIYALAKSHMI M, BAEK IH, NAM SC, YOON Y, KIM SH, JEONG SK. 2013. CO2 mineralization into different polymorphs of CaCO3 using an aqueous-CO2 system. RSC Adv. 3(44):21722-21729.

DICKINSON RS, HENDERSON GE, MCGRATH KM. 2002. Controlling the kinetic versus thermodynamic crystallization of calcium carbonate. J. Cryst. Growth. 244(3-4):369-378.

FENG Y, LI D, WANG Y, EVANS DG, DUAN X. 2006. Synthesis and characterization of a UV absorbent-intercalated Zn-Al layered double hydroxide. Polym. Degrad. Stabil. 91(4):789-794.

GUO B, ZHAO T, SHA F, ZHANG F, LI Q, ZHANG J. 2015. Control over crystallization of CaCO3 micro-particles by a novel CO2SM. CrystEngComm. 17(41):7896-7904.

HELBIG U. 2008. Growth of calcium carbonate in polyacrylamide hydrogel: Investigation of the influence of polymer content. J. Cryst. Growth. 310(11):2863-2870.

JIANG J, YE J, ZHANG G, GONG X, NIE L, LIU J. 2012. Polymorph and Morphology Control of CaCO3 via Temperature and PEG During the Decomposition of Ca(HCO3)2. J. Am. Ceram. Soc. 95(12):3735-3738.

KANG SH, HIRASAWA I, KIM WS, CHOI CK. 2005. Morphological control of calcium carbonate crystallized in reverse micelle system with anionic surfactants SDS and AOT. J. Colloid Interf. Sci. 288(2):496-502.

KATO T, SUZUKI T, AMAMIYA T, IRIE T, KOMIYAMA M, YUI H. 1998. Effects of macromolecules on the crystallization of CaCO3 the Formation of Organic/Inorganic Composites. Supramol. Sci. 5(3-4):411-415.

KLOPROGGE JT, FROST RL. 1999a. Fourier Transform Infrared and Raman Spectroscopic Study of the Local Structure of Mg-, Ni-, and Co-Hydrotalcites. J. Solid State Chem. 146(2):506-515.

KLOPROGGE JT, FROST RL. 1999b. Infrared emission spectroscopic study of the dehydroxylation of synthetic Mg/Al and Mg/Zn/Al-hydrotalcites. Phys. Chem. Chem. Phys. 1(7):1641-1647.

KONTOYANNIS CG, VAGENAS NV. 2000. Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst. 125(2):251-255.

LIN Y, HU Q, CHEN J, JI J, TENG HH. 2009. Formation of Metastable CaCO3 Polymorphs in the Presence of Oxides and Silicates. Cryst. Growth Des. 9(11):4634-4641.

LIU Q, WANG HS, ZENG Q. 2016. Vapor diffusion method: Dependence of polymorphs and morphologies of calcium carbonate crystals on the depth of an aqueous solution. J. Cryst. Growth. 449:43-46.

MANN S, OZIN GA. 1996. Synthesis of inorganic materials with complex form. Nature. 382(6589):313-318.

MARCHI AJ, APESTEGUÍA CR. 1998. Impregnation-induced memory effect of thermally activated layered double hydroxides. Appl. Clay Sci. 13(1):35-48.

MARTÍNEZ DR, CARBAJAL GG. 2012. Hidróxidos dobles laminares: arcillas sintéticas con aplicaciones en nanotecnología. Avances en Química. 7(1):87-99.

MATIJEVIĆ E. 1996. Controlled colloid formation. Curr. Opin. Colloid In. 1(2):176-183.

MURAMATSU K, SABER O, TAGAYA H. 2007. Preparation of new layered double hydroxide, Zn–Mo LDH. J. Porous Mater. 14(4):481-484.

NAN Z, CHEN X, YANG Q, WANG X, SHI Z, HOU W. 2008. Structure transition from aragonite to vaterite and calcite by the assistance of SDBS. J. Colloid Interf. Sci. 325(2):331-336.

NATO K, HUANG SC, CHUJO Y. 2006. Formation of Stable Vaterite with Poly (acrylic acid) by the Delayed Addition Method. Langmuir. 22(18):7760-7767.

OUHENIA S, CHATEIGNER D, BELKHIR MA, GUILMEAU E, KRAUSS C. 2008. Synthesis of calcium carbonate polymorphs in the presence of polyacrylic acid. J. Cryst. Growth. 310(11):2832-2841.

SABER O, TAYAGA H. 2003. New layered double hydroxide, Zn–Ti LDH: Preparation and intercalation reactions. J. Incl. Phenom. Macro. 45(1):107-115.

SABER O, HATANO B, TAYAGA H. 2005. Preparation of new layered double hydroxide, Co–Ti LDH. J. Incl. Phenom. Macro. 51(1):17-25.

SÁNCHEZ-PASTOR N, GIGLER AM, CRUZ JA, PARK SH, JORDAN G, FERNÁNDEZ-DÍAZ L. 2011. Growth of calcium carbonate in the presence of Cr(VI). Cryst. Growth Des. 11(7):3081-3089.

SARKAR A, DUTTA K, MAHAPATRA S. 2013. Polymorph control of calcium carbonate using insoluble layered double hydroxide. Cryst. Growth Des. 13(1):204-211.

TOBON-ZAPATA GE, ETCHEVERRY SB, BARAN, EJ. 1997. Vibrational spectrum of bismuth subcarbonate. J. Mater. Sci. Lett. 16(8):656-657.

TRUJILLANO R, HOLGADO MJ, GONZÁLEZ JL, RIVES V. 2005. Cu–Al–Fe layered double hydroxides with CO32− and anionic surfactants with different alkyl chains in the interlayer. Solid State Sci. 7(8):931-935.

WADA N, YAMASHITA K, UMEGAKI T. 1995. Effects of divalent cations upon nucleation, growth and transformation of calcium carbonate polymorphs under conditions of double diffusion. J. Cryst. Growth. 148(3):297-304.

WANG C, ZHAO X, ZHAO J, LIU Y, SHENG Y, WANG Z. 2007. Biomimetic nucleation and growth of hydrophobic vaterite nanoparticles with oleic acid in a methanol solution. Appl. Surf. Sci. 253(10):4768-4772.

WANG C, ZHANG X, XU ZH, SUN X, MA Y. 2015. Ethylene glycol intercalated cobalt/nickel layered double hydroxide nanosheet assemblies with ultrahigh specific capacitance: Structural design and green synthesis for advanced electrochemical storage. ACS Appl. Mater. Interfaces. 7(35):19601-19610.

WANG Q, O’HARE D. 2012. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112(7):4124-4155.

XU AW, DONG WF, ANTONIETTI M, CÖLFEN H. 2008. Polymorph switching of calcium carbonate crystals by polymer-controlled crystallization. Adv. Funct. Mater. 18(8):1307-1313.

YAN P, XU Z, YE S, CHENGYU W, YANHUI D, XIAOKUN M, YING L, ZICHEN W. 2007. Biomimetic synthesis of dendrite-shaped aragonite particles with single-crystal feature by polyacrylic acid. Colloid Surface A. 297(1-3):198-202.

YU Q, OU HD, SONG RQ, XU AW. 2006. The effect of polyacrylamide on the crystallization of calcium carbonate: Synthesis of aragonite single-crystal nanorods and hollow vatarite hexagons. J. Cryst. Growth. 286(1):178-183.

ZHAO T, GUO B, ZHANG F, SHA F, LI Q, ZHANG J. 2015. Morphology control in the synthesis of CaCO3 microspheres with a novel CO2-storage material. ACS Appl. Mater. Interfaces. 7(29):15918-15927.


Texto completo:

PDF

Referencias



Enlaces refback

  • No hay ningún enlace refback.

Comentarios sobre este artículo

Ver todos los comentarios
';



Licencia Creative Commons” style=
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.