Ammonia and colors as attractants to Rhodnius prolixus (Hemiptera: Reduviidae, triatominae) | Amoníaco y colores como atrayentes de Rhodnius prolixus (Hemiptera: Reduviidae, triatominae)

Fernando Otálora-Luna, Oscar Páez-Rondón, Ingrid Iniciarte, Elis Aldana

Resumen


Triatomines (Hemiptera, Triatominae) are the vector insects of the protozoan parasite Trypanosoma cruzi, the etiological agent of Chagas disease. In this study, we evaluate these insects´ preferences for a number of colored light emitting diodes (LEDs) under laboratory conditions. Then, we combine some of these colored lights with ammonia in order to evaluate the effect that such bimodal stimulation could have on Rhodnius prolixus, historically recognized as the main vector of T. cruzi in Venezuela. A Y-tube dual choice photo-olfactometer was used to carry out behavioral experiments on fifth-instar triatomine nymphs. At the ends of the Y-tube bifurcation monochromatic lights, produced by LEDs, and ammonia were offered. Our results show that blue light attracted R. prolixus (P < 0.01) and that other colors (ultraviolet, green, yellow, red and white) did not lead to positive phototaxis. Ammonia combined with white or blue light, attracted these triatomine insects (P < 0.05). In fact, stimulation with ammonia plus white light resulted in higher attraction than the smell by itself, giving evidence of additive or synergistic effect. In light of our findings, future challenges include understanding, on an ecological level, of the ‘adaptive’ (sensu lato) values of this behavior. Our results confirm the potential of ammonia and blue LEDs used in insecttraps.

 

Key words: Kissing-bugs, triatomines, Chagas disease, vision.

 

RESUMEN

 

Los triatominos (Hemiptera, Triatominae) son insectos vectores del protozoario parásito Trypanosoma cruzi, agente causal de la enfermedad de Chagas. En este estudio se evaluó las preferencias de los triatominos por luces de colores producidas por diodos emisores de luz (LEDs, por sus siglas en inglés). Luego, se combinó algunas de esas luces con amoníaco con el fin de evaluar el efecto que la estimulación bimodal podría tener en Rhodnius prolixus, históricamente reconocido como el principal vector de T. cruzi en Venezuela. Un photo-olfatómetro de opción dual en forma de “Y” sirvió para llevar a cabo los experimentos con ninfas de quinto estadio. Al final de la bifurcación de la “Y”, se ofrecieron amoníaco y luces monocromáticas. Nuestros resultados muestran que la luz azul atrajo a R. prolixus (P < 0,01) y que el resto de los colores (ultravioleta, verde, amarillo, rojo y blanco) no produjeron fototaxis positiva. El amoníaco combinado con luz blanca o azul, atrajo a estos insectos (P < 0,05). De hecho, el estimular los triatominos con amoníaco junto a la luz blanca, resultó que la combinación fue incluso más atractiva que el olor por sí solo, proporcionando evidencia de un efecto sinérgico. A la luz de estos descubrimientos, los futuros retos incluyen la comprensión, a un nivel ecológico, del valor adaptativo (sensu lato) de este comportamiento. Nuestros resultados confirman el potencial del amoníaco y los LEDs azules para ser usados en trampas de insectos.

 

Palabras clave: Chipos, triatominos, enfermedad de Chagas, visión.


Referencias


ABRAHAN L, GORLA D, CATALÁ S. 2011. Dispersal of Triatoma infestans and other Triatominae species in the arid Chaco of Argentina: flying, walking or passive carriage? The importance of walking females. Mem. Inst. Oswaldo Cruz. 106(2):232-239.

ABRAMSON C, SULBARÁN E, FRASCA J, FEHR R, LIZANO E, ALDANA E. 2005. Psychology of learning: A new approach to study behavior of Rhodnius prolixus Stal under laboratory conditions. Psychol. Rep. 97(3):721-731.

ABRAMSON C, ALDANA E, SULBARAN E. 2007. Exposure to Citral, Cinnamon and Ruda disrupts the life cycle of a vector of Chagas diseases. Am. J. Environ. Res. 3(1):7-8.

ALDANA E, OTÁLORA-LUNA F, ABRAMSON C. 2005. A new apparatus to study behavior of Triatomines under laboratory conditions. Psychol. Rep. 96(3):825-832.

ALDANA E, ABRAMSON C, LIZANO E, VEGAS R, SULBARAN-ROMERO E. 2008. Learning and orientation to odor in the bug Rhodnius prolixus Stal 1859 under laboratory conditions. Parasitol. Res. 103(3):587-594.

ALLAN S. 1987. Visual ecology of biting flies. Annu. Rev. Entomol. 32(1):297-316.

ANDREWARTHA J. 1972. The response of triatomine bugs to betalights. Trans. R. Soc. Trop. Med. Hyg. 66(2):327.

ANONYMOUS. 2006. Chagas’ disease - an epidemic that can no longer be ignored. Lancet. 368(9536):619.

AÑEZ N, CRISANTE G, ROJAS A, DÁVILA D. 2013. Brote de enfermedad de Chagas agudo de posible transmisión oral en Mérida, Venezuela. Bol. Malariol. Salud Amb. 53(1):1-11.

BARGHINI A, MEDEIROS B. 2010. Artificial lighting as a vector attractant and cause of disease diffusion. J. Environ. Health. Perspect. 118(11):1503-1506.

BARROZO R, LAZZARI C. 2004a. The response of the blood-sucking bug Triatoma infestans to carbon dioxide and other host odours. Chem. Senses. 29(4):319-329.

BARROZO R, LAZZARI C. 2004b. Orientation behaviour of the blood-sucking bug Triatoma infestans to short-chain fatty acids: synergistic effect of L-Lactic acid and carbon dioxide. Chem. Senses. 29(9):833-841.

BARROZO R, REISENMAN C, GUERENSTEIN P, LAZZARI C, LORENZO M. 2017. An inside look at the sensory biology of triatomines. J. Insect Physiol. 97(1):3-19.

BERNARD J. 1974. Etude électrophysiologique de récepteurs impliqués dans l’orientation vers l’hôte et dans l’acte hématophage chez un Hémiptère: Triatoma infestans. Rennes: University of Rennes [Thèse de doctorat], pp. 285.

BERNIER U, KLINE D, BARNARD D, SCHRECK C, YOST R. 2000. Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito (Aedes aegypti). Anal. Chem. 72(4):747-756.

BERTRAM D. 1971. Attraction of triatomine bug vectors of Chagas’s disease to betalights. Nature. 231(5300):268.

BLACKMER J, CAÑAS L. 2005. Visual cues enhance the response of Lygus hesperus (Heteroptera: Miridae) to volatiles from host plants. Environ. Entomol. 34(6):1524-1533.

BRISCOE A, CHITTKA L. 2001. The evolution of color vision in insects. Annu. Rev. Entomol. 46(1):471-510.

CARBAJAL DE LA FUENTE A, MINOLI S, LOPES C, NOIREAU F, LAZZARI C. R., LORENZO M. 2007. Flight dispersal of the Chagas disease vectors Triatoma brasiliensis and Triatoma pseudomaculata in northeastern Brazil. Acta Trop. 101(12):115-119.

CASTRO M, BARRETT T, SANTOS W, ABAD-FRANCH F, RAFAEL J. 2010. Attraction of Chagas disease vectors (Triatominae) to artificial light sources in the canopy of primary Amazon rainforest. Mem. Inst. Oswaldo Cruz. 8(105):1061-1064.

CHITTKA L. 1992. The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J. Comp. Physiol. A. 170(5):533-543.

CORK A, PARK K. 1996. Identification of electrophysiologically-active compounds for the malaria mosquito, Anopheles gambiae, in human sweat extracts. Med. Vet. Entomol. 10(3):269-276.

CRIST E. 1998. The ethological constitution of animals as natural objects: the technical writings of Konrad Lorenz and Nikolaas Tinbergen. ‎Biol. Philos. 13(1):61-102.

CROIZAT L. 1962. Space, time, form: The biological synthesis. Caracas, Venezuela, pp. 881.

DUSENBERY D. 1992. Sensory Ecology. W. H. Freeman & Co Ltd, New York, USA, pp. 558.

ENDLER J. 1990. On the measurement and classification of color in studies of animal color Patterns. Biol. J. Linn. Soc. 41(4):315-352.

GIURFA M, NUÑEZ J, CHITTKA L, MENZEL R. 1995. Colour preferences of flower-naïve honeybees. J. Comp. Physiol. A. 177(3):247-259.

GOULD S. 1991. Exaptation: A crucial tool for an evolutionary psychology. J. Soc. Issues. 47(3):43-65.

GREHAN J. 1984. Evolution by law: Croizat's “orthogeny” and Darwin's “laws of growth”. Tuatara. 27(1):14-19.

GUERENSTEIN P, GUERIN P. 2001. Olfactory and behavioural responses of the blood-sucking bug Triatoma infestans to odours of vertebrate hosts. J. Exp. Biol. 3(204):585-597.

GUERENSTEIN P, HILDEBRAND J. 2008. Roles and effects of environmental carbon dioxide in insect life. Annu Rev Entomol. 53:161-178.

GUERENSTEIN P, LAZZARI C. 2009. Host-seeking: how triatomines acquire and make use of information to find blood. Acta Trop. 110(2):148-158.

GUERENSTEIN P, LAZZARI C. 2010. The role of olfaction in host seeking of triatomine Bugs. In: TAKKEN W, BART G. (Ed). Olfaction in Vector-host Interactions. Wagenigen Academic Publishers. Wageningen, The Netherlands, pp 347.

GUIDOBALDI F, GUERENSTEIN P. 2013. Evaluation of a CO2-free commercial mosquito attractant to capture triatomines in the laboratory. J. Vector Ecol. 38(1):245-250.

HERNÁNDEZ EK, ROJAS-FERMÍN L, ALDANA E, OTÁLORA-LUNA F. 2017. Efecto de la canela sobre la muda, supervivencia y oviposición de Rhodnius prolixus. CLIC. 8(15):26-38.

HILBERT D. 1992. What is color vision? Philos. Stud. 68(3):351-370.

IHAKA R, GENTLEMAN R. 1966. A language for data analysis and graphics. J. Comput. Graph. Stat. 5(3):299-314.

KOEN C, KASTNER S. 2011. Sight. In: GOTTFRIED J (Ed). Neurobiology of Sensation and Reward. CRC Press/Taylor y Francis, Florida, USA, pp. 161-182.

LAPOINTE S, ALESSANDRO R, ROBBINS P, KHRIMIAN A, SVATOS A, DICKENS J, OTÁLORA-LUNA F, KAPLAN F, ALBORN H, TEAL P. 2012. Identification and synthesis of a male-produced pheromone for the neotropical root weevil Diaprepes abbreviates. J. Chem. Ecol. 38(4):408-417.

LONGCORE T, RICH C. 2004. Ecological light pollution. Front. Ecol. Environ. 2(4):191-198.

MCQUATE G. 2014. Green light synergistally enhances male sweet potato weevil response to sex pheromone. Scientific Reports. 4(1):4499.

MILNE A, ROSS E, SONENSHINE D, KIRSCH P. 2009. Attraction of Triatoma dimidiata and Rhodnius prolixus (Hemiptera: Reduviidae) to combinations of host cues tested at two distances. J. Med. Entomol. 46(5):1062-1073.

MINOLI S, LAZZARI C. 2006. Take-off activity and orientation of triatomines (Heteroptera: Reduviidae) in relation to the presence of artificial lights. Acta Trop. 97(3):324-330.

NOIREAU F, FLORES R, VARGAS F. 1999. Trapping sylvatic Triatominae (Reduviidae) in hollow trees. Trans. R. Soc. Trop. Med. Hyg. 93(1):13-14.

NÚÑEZ J. 1982. Food source orientation and activity in Rhodnius prolixus Stål (Hemiptera: Reduviidae). Bull. Entomol. Res. 72(2):253-262.

ORTIZ M, MOLINA J. 2010. Preliminary evidence of Rhodnius prolixus (Hemiptera: Triatominae) attraction to human skin odour extracts. Acta Trop. 113(2):174-179.

ORTIZ M, SUÁREZ-RIVILLAS A, MOLINA J. 2011. Behavioral responses to human skin extracts and antennal phenotypes of sylvatic first filial generation and long rearing laboratory colony Rhodnius prolixus. Mem. Inst. Oswaldo Cruz. 106(4):461-466.

OTÁLORA-LUNA F, ALDANA E. 2017.The beauty of sensory ecology. J. His. Philos. Lif. Sci. 39(3):20.

OTÁLORA-LUNA F, DICKENS J. 2011. Multimodal stimulation of Colorado potato beetle reveals modulation of pheromone response by yellow light. PLoS One. 6 (6):e20990.

OTÁLORA-LUNA F, GUERIN P. 2014. Amines from vertebrates guide triatomine bugs to resources. J. Insect Physiol. 71(1):52-60.

OTÁLORA-LUNA F, PERRET J, GUERIN P. 2004. Appetence behaviours of the triatomine bug Rhodnius prolixus on a servosphere in response to the host metabolites carbon dioxide and ammonia. J. Comp. Physiol. A. 190(10):847-854.

OTÁLORA-LUNA F, HAMMOCK J, ALESSANDRO R, LAPOINTE S, DICKENS J. 2009. Discovery and characterization of chemical signals for citrus root weevil, Diaprepes abbreviates. Arthropod. Plant. Interact. 3(2):63-73.

OTÁLORA-LUNA F, LAPOINTE S, DICKENS J. 2013. Olfactory cues are subordinate to visual stimuli in a neotropical generalist weevil. PLoS One. 8(1):e53120.

OTÁLORA-LUNA F, PÉREZ-SÁNCHEZ A, SANDOVAL C, ALDANA E. 2015a. Evolution of hematophagous habit in Triatominae (Heteroptera: Reduviidae). Rev. Chil. Hist. Nat. 88(1):1-13.

OTÁLORA-LUNA F, ALDANA E, VILORIA A. 2015b. Triatomines or humans: who are the invaders? Ludus Vitalis. 43(23):223-230.

OTÁLORA-LUNA F, ALDANA E, VILORIA A. 2017. Crítica a la teoría de la evolución pura: hacia la belleza estructural. Ludus Vitalis. 25(47):1-19.

PACHECO-TUCUCH F, RAMIREZ-SIERRA M, GOURBIÈRE S, DUMONTEIL E. 2012. Public street lights increase house infestation by the Chagas Disease vector Triatoma dimidiate. PLoS One. 7(4):e36207.

REBOLLAR-TÉLLEZ E, REYES-VILLANUEVA F, ESCOBEDO-ORTEGÓN J, BALAM-BRICEÑO P, MAY-CONCHA I. 2009. Abundance and nightly activity behavior of a sylvan population of Triatoma dimidiata (Hemiptera: Reduviidae: Triatominae) from the Yucatan, México. J. Vector. Ecol. 34(2):304-310.

REISENMAN C. 2014. Hunger is the best spice: effects of starvation in the antennal responses of the blood-sucking bug Rhodnius prolixus. J. Insect. Physiol. 71(1):8-13.

REISENMAN C, LAZZARI C. 2006. Spectral sensitivity of the photonegative reaction of the blood-sucking bug Triatoma infestans (Heteroptera: Reduviidae). J. Comp. Physiol. A. 192(1):39-44.

REISENMAN C, LAZZARI C, GIURFA M. 1998. Circadian control of photonegative sensitivity in the haematophagous bug Triatoma infestans. J. Comp. Physiol. A. 183(4):533-541.

REISENMAN C, LORENZO FIGUEIRAS A, GIURFA M, LAZZARI C. 2000. Interaction of visual and olfactory cues in the aggregation behaviour of the haematophagous bug Triatoma infestans. J. Comp. Physiol. A. 186 (10):961-968.

REISENMAN C, INSAUSTI T, LAZZARI C. 2002. Light-induced and circadian changes in the compound eye of the haematophagous bug Triatoma infestans (Hemiptera: Reduviidae). J. Exp. Biol. 205(2):201-210.

ROSE A. 1998. Investigation into the host finding of a bloodsucking bug from South America: Triatoma infestans (Klug) (Hemiptera: Reduviidae), a vector of Chagas disease. Regensburg: University of Regensburg [PhD Dissertation], pp. 156.

SANDOVAL C, NIEVES E, GUTIÉRREZ R, JAIMES D, ORTIZ N, OTÁLORA-LUNA F, ALDANA E. 2015. Morphometric analysis of the host effect on phenotypical variation of Belminus ferroae (Hemiptera: Triatominae). Psyche. 1(1):1-12.

SJOGREN R, RYCKMAN R. 1966. Epizootiology of Trypanosoma cruzi in southwestern North America. Part viii: Nocturnal flights of Triatoma protracta (Uhler) as indicated by collections at black light traps (Hemiptera: Reduviidae: Triatominae). J. Med. Entomol. 2(1):87-108.

SOKAL R, ROHLF F. 1995. Biometry. W. H. Freeman, New York, USA, pp. 887.

STEVENS M. 2013. Sensory ecology, Behavior y Evolution, Oxford University Press, Oxford, UK, pp. 301.

STEVERDING D. 2013. Visible spectral distribution of shadows explains why blue targets with a high reflectivity at 460 nm are attractive to tsetse flies. Parasite Vector. 6(1):285.

TANEJA J, GUERIN P. 1997. Ammonia attracts the hematophagous bug Triatoma infestans: behavioural and neurophysiological data on nymphs. J. Comp. Physiol. A. 181(1):21-34.

TINBERGEN N. 1963. On aims and methods of ethology. Z. Tierphysiol. Tierer. 20(4):410-433.

VAZQUEZ-PROKOPEC G, CEBALLOS L, MARCET P, CECERE M, CARDINAL M, KITRON U, GÜRTLER R. 2006. Seasonal variations in active dispersal of natural populations of Triatoma infestans in rural north-western Argentina. Med. Vet. Entomol. 20(3):273-279.

VINAUGER C, PEREIRA M, LAZZARI C. 2011. Learned host preference in a Chagas disease vector, Rhodnius prolixus. Acta Trop. 122(1):24-28.

VINAUGER C, LALLEMENT H, LAZZARI C. 2013. Learning and memory in Rhodnius prolixus: habituation and aversive operant conditioning of the proboscis extension response. J. Exp. Biol. 2016(5):892-900.

WARD J, FINLAYSON L. 1982. Behavioural responses of the haematophagous bug Triatoma infestans (Klug) (Hemiptera: Reduviidae) to visual stimuli. Bull. Entomol. Res. 72(3):357-366.

WARRANT E, DACKE M. 2011. Vision and visual navigation in nocturnal insects. Annu. Rev. Entomol. 56:239-254.

WARRANT E, DACKE M. 2016. Visual navigation in nocturnal insects. Physiology. 3(31):182-192.

WISNIVESKY-COLI C. GÜRTLER R, SOLARZ N, SCHWEIGMANN N, PIETROKOVSKY S, ALBERTI A, FLO J. 1993. Dispersive flight and house invasion by Triatoma guasayana and Triatoma in Argentina. Mem. Inst. Oswaldo Cruz. 88(1):27-32.


Texto completo:

PDF

Referencias



Enlaces refback

  • No hay ningún enlace refback.

Comentarios sobre este artículo

Ver todos los comentarios
';



Licencia Creative Commons” style=
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.