Bioconcentración y riesgos por metales en plantas cultivadas y ruderales comestibles del estado Vargas, Venezuela | Bioconcentration and risks by metals in crops and edible ruderal plants from Vargas state, Venezuela
Resumen
El consumo humano de vegetales de hoja es una manera frecuente de alimentación. Sin embargo, existen riesgos de contaminación por metales y consecuentes daños a la salud debido a que la práctica agrícola convencional, centrada en altos rendimientos y ciclos cortos de cultivo, obliga al uso de agroquímicos. El objetivo del trabajo fue evaluar y comparar los contenidos, bioconcentración y riesgo de toxicidad de elementos minerales nutrientes y no esenciales en tres especies vegetales de hoja: cilantro (Coriandrum sativum) como especie de cultivo, y las ruderales amaranto (Amaranthus hybridus) y albahaca silvestre (Galinsoga sp.) con potencial alimentario. En una zona agrícola de la parroquia Carayaca del estado Vargas, Venezuela, se recolectaron hojas adultas de las tres especies el primer año y de las dos ruderales el segundo año, las cuales fueron secadas, molidas y digeridas en ácidos nítrico y perclórico para medir la concentración de elementos minerales por espectrofotometría de plasma (ICP). Se obtuvieron contenidos de Ca, Mg y P que indican alto potencial alimenticio en las ruderales. Los contenidos de Ni en A. hybridus (1,2 mg kg-1 - 6,7 mg kg-1) estuvieron por encima de los límites permisibles de la FAO. Las concentraciones de Mn, Cr, Cu y Zn estuvieron por debajo de dichos límites pero fueron significativamente mayores en las ruderales que en el cilantro. Los factores de bioconcentración de Ca y P en las ruderales fueron mayores a 1. Los coeficientes de riesgo por Ni y Pb fueron altos para todas las especies estudiadas, lo que implica riesgo en escenarios supuestos de alto consumo por niños.
Palabras clave: Salud, coeficiente de riesgo, cilantro, toxicidad.
ABSTRACT
Human consumption of leafy vegetables is a common way to obtain nutrients. However, there are risks of contamination by metals and consequent health damage because conventional agricultural practice, based on high yields and short growing cycles, requires the use of agrochemicals. The objective of this study was to evaluate and compare the contents, bioconcentration and toxicity risks of nutrients and non-essential mineral elements in three leafy vegetable species: a crop species, coriander (Coriandrum sativum), and the ruderals amaranthus (Amaranthus hybridus) and wild basil (Galinsoga sp.), wild growing species with dietary potential. In an agricultural area of the Carayaca rural community in Vargas State, Venezuela, adult leaves of the three species were collected the first year and the two ruderals in the second year. Samples were dried, milled and digested in nitric and perchloric acids, and the concentration of mineral elements was measured by plasma spectrometry (ICP). Contents of Ca, Mg and P showed high nutritional potential in the ruderals. Nickel concentrations in A. hybridus (1.2 mg kg-1 - 6.7 mg kg-1) were above the permissible limits of FAO, whereas Mn, Cr, Cu and Zn were below those limits but significantly higher in ruderals than in coriander. The bioconcentration factors of Ca and P in ruderal species were greater than 1. The risk coefficients for Ni and Pb were high for all the species studied, which implies risk in hypothetical scenarios of high consumption by children.
Key words: Health, risk coefficient, cilantro, toxicity.
Referencias
ACHIGAN-DAKO EG, SOGBOHOSSOU OE, MAUNDU P. 2014. Current knowledge on Amaranthus spp.: research avenues for improved nutritional value and yield in leafy amaranths in sub-Saharan Africa. Euphytica. 197(3):303-317.
ADAMS ML, ZHAO FJ, MCGRATH SP, NICHOLSON FA, CHAMBERS BJ. 2004. Predicting cadmium concentrations in wheat and barley grain using soil properties. J. Environ. Qual. 33(2):532-541.
AKTARUZZAMAN M, FAKHRUDDIN AN, CHOWDHURY MA, FARDOUS Z, ALAM MK. 2013. Accumulation of heavy metals in soil and their transfer to leafy vegetables in the region of Dhaka Aricha Highway, Savar, Bangladesh. Pak. J. Biol. Sci. 16(7):332-338.
AMALRAJ A, PIUS A. 2015. Bioavailability of calcium and its absorption inhibitors in raw and cooked green leafy vegetables commonly consumed in India–An in vitro study. Food Chem. 170(1):430-436.
AZZI V, KAZPARD V, LARTIGES B, KOBEISSI A, KANSO A, EL SAMRANI AG. 2017. Trace metals in phosphate fertilizers used in Eastern Mediterranean countries. CSAWAC 45(1).N/A.
BERMÚDEZ GM, JASAN R, PLÁ R, PIGNATA ML. 2011. Heavy metal and trace element concentrations in wheat grains: assessment of potential non-carcinogenic health hazard through their consumption. J. Hazard. Mater. 193:264-271.
BROADLEY MR, BOWEN HC, COTTERILL HL, HAMMOND JP, MEACHAM MC, MEAD A, WHITE PJ. 2004. Phylogenetic variation in the shoot mineral concentration of angiosperms. J. Exp. Bot. 55(396):321-336.
CHANG CY, YU HY, CHEN JJ, LI FB, ZHANG HH, LIU CP. 2014. Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China. Environ. Mon. Assess. 186(3):1547-1560.
DÍAZ-BETANCOURT M, GHERMANDI L, LADIO A, LÓPEZ-MORENO IR, RAFFAELE E, RAPOPORT EH. 1999. Weeds as a source for human consumption. A comparison between tropical and temperate Latin America. Rev. Biol. Trop. 47(3):329-338.
DIVRIKLI U, HORZUM N, SOYLAK M, ELCI L. 2006. Trace heavy metal contents of some spices and herbal plants from western Anatolia, Turkey. Int. J. Food Sci. Technol. 41(6):712-716.
EMAMGHOREISHI M, KHASAKI M, AAZAM MF. 2005. Coriandrum sativum: evaluation of its anxiolytic effect in the elevated plus-maze. J. Ethnopharmacol. 96(3):365-370.
EPSTEIN E, BLOOM AJ. 2005. Mineral nutrition of plants: Principles and perspectives. 2nd ed. Sinauer, Sunderland, MA, USA, pp. 380.
ESPINOSA-GARCÍA FJ, VÁZQUEZ-BRAVO R, MARTÍNEZ-RAMOS M. 2003. Survival, germinability and fungal colonization of dimorphic achenes of the annual weed Galinsoga parviflora buried in the soil. Weed Res. 43(4):269-275.
GLOWACKA A. 2011. Dominant weeds in maize (Zea mays L.) cultivation and their competitiveness under conditions of various methods of weed control. Acta Agrobot. 64(2):119-126.
GRIME JP. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111(982):1169-1194.
GUPTA S, JENA V, JENA S, DAVIĆ N, MATIĆ N, RADOJEVI D, SOLANKI JS. 2013. Assessment of heavy metal contents of green leafy vegetables. Croatian J. Food Sci. Technol. 5(2):53-60.
HOUGH RL, BREWARD N, YOUNG SD, CROUT NM, TYE AM, MOIR AM, THORNTON I. 2004. Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations. Environ. Health Perspect. 112(2):215-221.
HUANG B, SHI X, YU D, ÖBORN I, BLOMBÄCK K, PAGELLA TF, WANG H, SUN W, SINCLAIR FL. 2006. Environmental assessment of small-scale vegetable farming systems in peri-urban areas of the Yangtze River Delta Region, China. Agric. Ecosyst. Environ. 112(4):391-402.
JIAO W, CHEN W, CHANG AC, PAGE AL. 2012. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review. Environ. Pollut. 168:44-53.
JONES JB. 2001. Laboratory guide for conducting soil tests and plant analysis. CRC Press, Boca Ratón, FL, USA, pp. 32-33.
JOVANOVIC VPS, ILIC MD, MARKOVIC MS, MITIC VD, MANDIC SDN, STOJANOVIC GS. 2011. Wild fire impact on copper, zinc, lead and cadmium distribution in soil and relation with abundance in selected plants of Lamiaceae family from Vidlic Mountain (Serbia). Chemosphere. 84(11):1584-1591.
KHAN MU, MALIK RN, MUHAMMAD S. 2013. Human health risk from heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere. 93(10):2230-2238.
KOWALSKA J, STRYJEWSKA E, BYSTRZEJEWSKA-PIOTROWSKA G, LEWANDOWSKI K, TOBIASZ M, PADYNA J, GOLIMOWSKI J. 2012. Studies of plants useful in the re-cultivation of heavy metals-contaminated wasteland – a new hyperaccumulator of barium? Polish J. Environ. Stud. 21(2):401-405.
KRÄMER U. 2010. Metal hyperaccumulation in plants. Ann. Rev. Plant Biol. 61(1):517-534.
LIU G, YU Y, HOU J, XUE W, LIU X, LIU Y, WANG W, ALSAEDI A, HAYAT T, LIU, Z. 2014. An ecological risk assessment of heavy metal pollution of the agricultural ecosystem near a lead-acid battery factory. Ecol Indic. 47:210-218.
LO CANTORE P, IACOBELLIS N, DE MARCO A, CAPASS F, SENATORE F. 2004. Antibacterial activity of Coriandrum sativum L. and Foeniculum vulgare Miller var. vulgare (Miller) essential oils. J. Agric. Food Chem. 52(26):7862-7866.
MAERTENS KD, SPRAGUE CL, TRANEL PJ, HINES RA. 2004. Amaranthus hybridus populations resistant to triazine and acetolactate synthase-inhibiting herbicides. Weed Res. 44(1):21-26.
MATESANZ S, VALLADARES F. 2009. Plantas ruderales. Ciencia y Sociedad. 390:10-11.
MATU EN, VAN STADEN J. 2003. Antibacterial and anti-inflammatory activities of some plants used for medicinal purposes in Kenya. J. Ethnopharmacol. 87(1):35-41.
MCGREGOR DF, ADAM-BRADFORD A, THOMPSON DA, SIMON, D. 2011. Resource management and agriculture in the periurban interface of Kumasi, Ghana: Problems and prospects. Singap. J Trop. Geogr. 32(3):382-398.
MILLER RO. 1998. Nitric-perchloric acid wet digestion in an open vessel. In: KALRA YP. (Ed.). Handbook of reference methods for plant analysis. CRC Press, Boca Raton, FA, USA, pp. 57-61.
MOLINA E, GONZÁLEZ P, MONTERO K, FERRER R, MORENO R, SÁNCHEZ A. 2011. Efecto de la época de recolecta y órgano de la planta sobre el contenido de metales de Amaranthus dubius. Interciencia 36(5):386-391.
NABULO G, YOUNG SD, BLACK CR. 2010. Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils. Sci. Total Environ. 408(22):5338-5351.
NABULO G, BLACK CR, CRAIGON J, YOUNG SD. 2012. Does consumption of leafy vegetables grown in peri-urban agriculture pose a risk to human health? Environ. Pollut. 162:389-398.
NASER HM, SULTANA S, MAHMUD NU, GOMES R, NOOR S. 2011. Heavy metal levels in vegetables with growth stage and plant species variations. Bangladesh J. Agric. Res. 36(49):563-574.
OLIVARES E, PEÑA E. 2009. Bioconcentración de elementos minerales en Amaranthus dubius (bledo, pira), creciendo silvestre en cultivos del estado Miranda, Venezuela, y utilizado en alimentación. Interciencia 34(9):604-611.
ÖZCAN MM, ÜNVER A, UÇAR T, ARSLAN D. 2008. Mineral content of some herbs and herbal teas by infusion and decoction. Food Chem. 106(3):1120-1127.
REMON E, BOUCHARDON JM, LE GUÉDARD M, BESSOULE JJ, CONORD C, FAURE O. 2013. Are plants useful as accumulation indicators of metal bioavailability? Environ. Poll. 175:1-7.
ROSS SM. 1994. Sources and forms of potentially toxic metals in soil-plant systems. In: ROSS M. (Ed). Toxic metals in soil-plant system. Wiley, Chichester, UK, pp. 3-25.
SCĂEŢEANU GV, LEONARD I, CĂLIN C. 2013. An overview on manganese in nature. Am. Chem. Sci. J. 3(3):247-263.
SHERENA PA, ANNAMALA PT, MUKKADAN JK, RAMADAS D. 2018. Biochemical assays of crude and purified oxycarotenoid extracts isolated from coriander leaves and their effect on oxidative stability of oils by Rancimat assay. Res. Rev. A J. Biotechnol. 8(1):1-10.
SURUCHI K, JILANI A. 2011. Assessment of heavy metal concentration in washed and unwashed vegetables exposed to different degrees of pollution in Agra, India. Electronic J. Environ. Agric. Food Chem. 10(8):2700-2710.
VAN GESTEL CA. 2008. Physico-chemical and biological parameters determine metal bioavailability in soils. Sci. Total Environ. 406(3):385-395.
WHO/FAO (WORLD HEALTH ORGANIZATION/FOOD AND AGRICULTURE ORGANIZATION) 2007. Joint FAO/WHO Food Standard Programme Codex Alimentarius Commission 13th Session. Report of the Thirty-Eight Session of the Codex Committee on Food Hygiene. ALINORM, Houston, TX, USA.
WONG PY, KITTS DD. 2006. Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chem. 97(3):505-515.
Texto completo:
PDFReferencias
Enlaces refback
- No hay ningún enlace refback.