Análisis de la diversidad genética de las regiones HVI y HVII del genoma mitocondrial en una muestra de la población de Maracaibo, Venezuela | Genetic diversity of HVI and HVII mitocondrial genome regions in a population sample of Maracaibo, Zulia state, Venezuela

José Quintero Ferrer, Lisbeth Borjas Fuentes, Tatiana Pardo Govea

Resumen


El estudio de los polimorfismos de las regiones hipervariables I y II del ADN mitocondrial se ha convertido en una herramienta invaluable para la ciencia forense, permitiendo el análisis de material biológico exiguo, así como la filiación biológica por línea materna. Con el objetivo de analizar la diversidad genética de las regiones HVI y HVII del genoma mitocondrial en la población de Maracaibo, estado Zulia, se eligieron 50 individuos, cuyos ADN se amplificaron mediante la reacción en cadena de la polimerasa, se secuenciaron las regiones hipervariables mediante método de Sanger y los fragmentos se separaron por electroforesis capilar y fueron reportadas las diferencias con respecto a la secuencia de referencia de Cambridge. La diversidad genética de ambas regiones fue de 0,9837 ± 0,0084, la diversidad nucleotídica de 0,020001 ± 0,010201, la media de las diferencias por parejas 12,160816 ± 5,588550, el poder de discriminación 0,9640 y la probabilidad de coincidencia al azar 0,0360. Estos resultados determinaron que los haplogrupos observados en las muestras analizadas correspondieran a Amerindios 68% (A 32% B 18%, C 4% y D 14%), Africanos 20% (L 20%), Europeos 8 % (H 2%, K 2% U 2%, W 2%) y Asiáticos 2% (N 2%). Los datos demuestran que los polimorfismos en las regiones HVI y HVII son suficientemente informativos como para ser utilizados en la casuística forense.

 

Palabras clave: ADN mitocondrial, regiones hipervariables, región control, identificación humana, población venezolana.

 

 

ABSTRACT

 

The study of the polymorphisms of hypervariable regions I and II of mitochondrial DNA; has become an invaluable tool for forensic science due to features like its exclusively maternal inheritance; allowing the analysis of meager biological material; as well as biological matrilineal descent. In order to analyze the genetic diversity of HVI and HVII regions of the mitochondrial genome in the population of Maracaibo; Zulia state; DNA samples from 50 persons were randomly selected; and hypervariable regions were amplified by polymerase chain reaction; subsequently sequenced by Sanger method and the fragments were separated by capillary electrophoresis; the differences were reported with respect to the Cambridge reference sequence. The genetic diversity of both regions was 0.9837 ± 0.0084; the nucleotide diversity 0.020001 ± 0.010201; Mean number of pairwise differences 12.160816 ± 5.588550; the power of discrimination 0.9640 and the random match probability of 0.0360. These results determined thathe haplogroups observed in the samples analyzed corresponded to Amerindian 68% (A 32% B 18%; C 4% and D 14%); Africans (L 20%); Europe 8 % (H 2%; K 2% U 2%; W 2%) and Asian (N 2%). The data generated from this study indicate that polymorphisms in the regions HVI and HVII are sufficiently informative to be used in forensic identification.

 

Key words: Mitochondrial DNA; hypervariable regions; control region; forensic identification; Venezuelan population.


Referencias


ALLARD M; POLANSKEY D; WILSON M; MONSON K; BUDOWLE B. 2006. Evaluation of variation in control region sequences for Hispanic individuals in the SWGDAM mtDNA data set. J. Forensic Sci. 51(3):566-573.

AQUADRO C; GREENBERG B. 1983. Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences for seven individuals. Genetics. 103(2):287-312.

BEHAR D; VILLEMS R; SOODYALL H; BLUE-SMITH J; PEREIRA L; METSPALU E; SCOZZARI R; MAKKAN H; TZUR S; COMAS D; BERTRANPETIT J; QUINTANA-MURCI L; TYLER-SMITH C; WELLS R; ROSSET S; GENOGRAPHIC CONSORTIUM. 2008. The dawn of human matrilineal diversity. Am. J. Hum. Genet. 82(5):1130-1140.

BERNARDO S; HERMIDA R; DESIDÉRIO M; SILVA D; DE CARVALHO E. 2014. MtDNA ancestry of Rio de Janeiro population; Brazil. Mol. Biol. Rep. 41(4):1945-1950.

BINI C; CECCARDI S; LUISELLI D; FERRI S; PELOTTI; COLALONGO C; FALCONI M; PAPPALARGO G. 2003. Different informativeness of the three hypervariable mitochondrial DNA regions in the population of Bologna (Italy). Forensic Sci. Int. 135(1):48-52.

BOBILLO M; ZIMMERMANN B; SALA A; HUBER G; RÖCK A; BANDELT H; CORACH D; PARSON W. 2010. Amerindian mitochondrial DNA haplogroups predominate in the population of Argentina: towards a first nationwide forensic mitochondrial DNA sequence database. Int. J. Legal Med. 124(4):263-268.

BORJAS L; BERNAL L; CHIURILLO M; TOVAR F; ZABALA W; LANDER N; RAMÍREZ J. 2008. Usefulness of 12 Y-STRs for forensic genetics evaluation in two populations from Venezuela. Leg. Med. (Tokyo). 10(2):107-112

BRANDSTÄTTER A; NIEDERSTÄTTER H; PAVLIC M; GRUBWIESER P; PARSON W. 2007. Generating population data for the EMPOP database-an overview of the mtDNA sequencing and data evaluation processes considering 273 Austrian control region sequences as example. Forensic Sci. Int. 166(2-3):164-175.

BUDOWLE B; WILSON M; DI ZINNO J; STAUFFER C; FASANO M; HOLLAND M; MONSON K. 1999. Mitochondrial DNA regions HVI and HVII population data. Forensic Sci. Int. 103(1):23-35.

CARRACEDO A; BÄR W; LINCON P; MAYR W; MORLING N; OLAISEN B; SCHNEIDER P; BUDOWLE B; BRINKMANN B; GILL P; HOLLAND M; TULLY G; WILSON M. 2000. DNA commission of the international society for forensic genetics: guidelines for mitochondrial DNA typing. Forensic Sci. Int. 110(2):79-85.

EXCOFFIER L; LAVAL L; SCHNEIDER S. 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. Online. 1:47-50.

JUST R; SCHEIBLE M; FAST S; STURK-ANDREAGGI K; RÖCK A; BUSH JM; HIGGINBOTHAM J; PECK M; RING J; HUBER G; XAVIER C; STROBL C; LYONS E; DIEGOLI T; BODNER M; FENDT L; KRALJ P; NAGL S; NIEDERWIESER D; ZIMMERMANN B; PARSON W; IRWIN J. 2015. Full mtGenome reference data: development and characterization of 588 forensic-quality haplotypes representing three U.S. populations. Forensic Sci Int Genet. 14:141-55.

LANDER N; ROJAS M; CHIURILLO M; RAMÍREZ J. 2008. Haplotype diversity in human mitochondrial DNA hypervariable regions I-III in the city of Caracas (Venezuela). Forensic Sci. Int. Genet. 2(4):e61-e64.

LEE H; SONG I; HA E; CHO S; YANG W; SHIN K. 2008. mtDNAmanager: aWeb-based tool for the management and quality analysis of mitochondrial DNA control-region sequences. BMC Bioinformatics. 9:483.

LIMA G; PEÑA J; SANCHEZ A; PONTES M; ABRANTES P; PEREIRA M; FERNANDEZ-FERNANDEZ I; CASTRO A; PINHEIRO M; MARTÍNEZ M. 2004. Analysis of the HVI and HVII regions of mitochondrial DNA in 100 individuals from North of Portugal. ICS. 1261:366-368.

MARTÍNEZ JD. 1988. Presencia africana en el sur del Lago de Maracaibo (Zulia; Mérida y Trujillo). Colección de Temas afrovenezolanos Nº 3; Maracaibo; Venezuela.

MARTÍNEZ H; RODRÍGUEZ-LARRALDE A; IZAGUIRRE M; DE GUERRA D. 2007. Admixture estimates for Caracas; Venezuela; based on autosomal; Y-chromosome; and mtDNA markers. Hum Biol. 79(2):201-213.

MEYER S; WEISS G; VON HAESELER A. 1999. Pattern of nucleotide substitution and rate heterogeneity in the hypervariable regions I and II of human mtDNA. Genetics. 152(3):1103-1110.

MICAH A; STEPHEN R. 2001. DNA and forensic science. New Engl. Law Rev. 35(3):309-311.

MILLER S; DYKES D; POLESKY H. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16(3):1215.

NEI M; TAJIMA F. 1981. DNA polymorphism detectable by restriction endonucleases. Genetics. 97(1):145-163.

OVCHINNIKOV I; MALEK M; KJELLAND K; DREES K. 2016. Whole Human Mitochondrial DNA Sequencing. Methods Mol. Biol. 1420:157-171.

PARSON W; GUSMÃO L; HARES D; IRWIN J; MAYR W; MORLING N; POKORAK E; PRINZ M; SALAS A; SCHNEIDER P; PARSONS T; DNA COMMISSION OF THE INTERNATIONAL SOCIETY FOR FORENSIC GENETICS. 2014. DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing. Forensic Sci. Int. Genet. 13:134-142

POETSCH M; WITTIG H; KRAUSE D; LIGNITZ E. 2003. Mitochondrial diversity of a northeast German population simple. Forensic Sci. Int. 137(2-3):125-132. Fe de errata: Forensic Sci. Int. 2004. 145(1):73-77.

PINEDA L; BORJAS L; ZABALA W; PORTILLO M; FERNÁNDEZ E; DELGADO W; TOVAR F; LANDER N; CHIURILLO M; RAMÍREZ J; GARCÍA O. 2006. Genetic variation of 15 STR autosomal loci in the Maracaibo population from Venezuela. Forensic Sci. Int. 161(1):60-63.

RUIZ-PESINI E; LOTT M; PROCACCIO V; POOLE J; BRANDON M; MISHMAR D; YI C; KREUZIGER J; BALDI P; WALLACE D. 2007. An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res. 35:D823-D828.

SALAS A; LOVO-GÓMEZ J; ALVAREZ-IGLESIA V; CEREZO M; LAREU M; MACAULAY V; RICHARD M; CARRACEDO A. 2009. Mitochondrial Echoes of first Settlement and Genetic Continuity in El Salvador. PLoS One. 4(9):e6882.

SAUNIER J; IRWIN J; JUST R; O'CALLAGHAN J; PARSONS T. 2008. Mitochondrial control region sequences from a U.S. "Hispanic" population sample. Forensic Sci. Int. Genet. 2(2):e19-e23.

STADEN R; BEAL K; BONFIELD J. 2000. The Staden package; 1998. Methods Mol. Biol. 132:115-130.

STONEKING M; HEDGECOCK D; HIGUCHI R; VIGILANT L; ERLICH H. 1991. Population variation of human mtDNA control region sequences detected by enzymatic amplification and sequence-specific oligonucleotide probes. Am. J. Hum. Genet. 48(2):370-382.

TULLY G; BAR W; BRINKMANN B; CARRACEDO A; GILL P; MORLING N; PARSON W; SCHNEIDER. 2001. Considerations by the European DNA profiling (EDNAP) group on the working practices; nomenclature and interpretation of mitochondrial DNA profiles. Forensic Sci. Int. 124(1):83-91.

WALLACE D. 1995. 1994 William Allan Award Address. Mitochondrial DNA variation in human evolution; degenerative disease; and aging. Am. J. Hum. Genet. 57(2):201-223.


Texto completo:

PDF

Referencias



Enlaces refback

  • No hay ningún enlace refback.
';



Licencia Creative Commons” style=
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.